

The Perfect Boat Cruise

Problem Description

I would be working on a real-world scenario where convex optimization, optimization techniques,

and mixed integer programming could be applied. Although this is a variant of the knapsack problem, this

problem is one which I have come to know as the Perfect Boat Cruise Problem.

Imagine you just bought a new ship, and are about to open this ship to the public for its first ride.

As a new venture, you wish to maximize revenue from this ride, avoid as much damage to the ship as

possible, and increase the popularity of your boat in the best way possible. Here, I explore ways to

optimize the selection of your first set of customers, such that you, as the cruise owner, gets the most out

of this ride.

This problem isn’t one which is only applicable to ship cruises. Given the spike in celebrity

status, and increase in demand for tourism, the solution to this optimization problem could apply to the

opening and use of other exotic experiences such as plane trips, excursions and events to the public, such

that the organizers make as much money as possible, avoid as much damage as possible, and still allow

for a spread of the word through this event. Building owners, for example, who wish to increase publicity

for their rental business could use results of this analysis to determine the best individuals to rent

apartments in their buildings to during periods of high demand, such that they maximize revenue and

reduce damages. With respect to the tech world, results from this analysis could even provide insight into

how to optimize ad revenue and outreach for your site, while maintaining an optimized site for a google

search.

Solution Specification

I begin this analysis with a very basic model and go on later in the paper to test out much more interesting

variants of the same problem. In the simpler case, the boat owner simply wishes to maximize only the

revenue he would be generating from his cruise. Constraints for this base case problem could include

constraints on

● the number of kids allowed during the trip (to reduce damage on the ship),

● the least number of celebrities expected to participate in the cruise (celebrities increase publicity)

● The maximum total weight allowed on the ship

Based on the above information, one could express the maximization problem as

Where B represents the bidding by each individual for the boat ticket, K represents the number of kids

each individual has, C is a boolean representing the individual’s celebrity status, and X is the boolean

variable to be optimized; where 1 means that an individual goes on the cruise.

The above maximization problem is a nonconvex programming problem, and a mixed integer

optimization problem(with binary variables). This problem is disqualified as an LP, since the feasible set

for a linear programming problem should always be a convex function, and the X = {0,1} constraint of

this given problem is neither a continuous nor convex function.

From the above pieces of information, one could tell that solving this optimization problem

manually could involve a technique such as the branch and bound method. Branch and bound method

involves a tree-like search, where branches representing the subsets of the solution set are visited, and

compared with bounds for the optimal solution. A particular branch is then taken only if it can produce a

better solution than the previously calculated optimal solution.

Analysis

For the analysis, 700 pieces of random data were generated and used for the optimization tests based on a

series of cvxpy algorithms. This data included the following measures

● Name of the individual

● Age of the individual

● Number of kids

● Celebrity status(boolean)

● The weight of the individual

● Amount bid on the cruise

● Gender

This data was then organized, and fed into a cvxpy algorithm which optimizes the amount of money made

by the boat owner, while satisfying certain constraints on the number of kids allowed on the cruise(<60),

number of celebrities needed(>10), and the maximum weight the boat can carry(1000 kilos).

Running the algorithm on the random data, we get the result below

This algorithm, in fact, works and solves the problem as we would expect (when you inspect the results).

We would like to push this analysis further and attempt to model as much of the real world

scenario as possible. It is obvious that profit isn’t usually the only ingredient of interest. The shipowner

could have different levels of interests in achieving different objectives, including making profit, reducing

damage, and getting celebrity recommendation. In one case, a company might just be focused on gaining

celebrity recognition, while another company could be equal parts reducing damage and gaining profit.

Given that this is the case, there could exist 3 or more objective functions, which have been weighted

according to their level of importance to the shipowner. This would, in fact, make the problem a

multi-objective-multiple integer optimization problem.

To go about optimizing this variant of the cruise problem,, it is essential to normalize the

data(through centering and scaling) in order to reduce the effect of differences in scales between the

different objective units. After the scaling is done, a maximization problem with 3 weighted objective

functions is solved, subject to the weight constraint. The 3 components of this multi-objective function are

1. Maximize the total revenue generated * an importance level of 0.6

2. Maximize the number of celebrities attending * a weight of 0.2

3. Minimize the amount of damage/kids * weight of 0.2 (or maximize -damage*0.2)

Running the code for this new multi-objective optimization problem, we find a completely different result

as in the earlier case, as shown below;

An even more solidified real-world replica of this scenario is one in which a shipowner has a

strict upper or lower bound on one or all of these various, and still wishes to achieve each of these

different objectives according to personal weights. To push through with this, it would be necessary to

also normalize the constraints, in order to make them suitable for use with the normalized data. Observing

the results, we even have another unique, and interesting solution to the problem based on the algorithm.

Meta-analysis of the 3 Methods so far

 Basic Solution Weighted Solution for
multi-objective optimization

Combined approach

Structure

Revenue 234490 212065 189212

Kids
onboard

50 52 34

Adults
onboard

21 16 16

Celebrities
onboard

11 12 14

Total weight 1000 998 955

Summary/Self-Reflection

Using the cvxpy framework, we have seen how the results of various approaches to the same

problem look like. Based on these results, we could expect that a boat owner who is more lax, and wishes

to just constrain all other factors and maximize profit would make the highest amount of profit, but might

be missing out on the possibility of higher publicity due to the nature of his approach. A cruise owner

who just uses weights to determine client selection would make a large amount of profit too and seems to

have the most evenly satisfied objectives. The final cruiser, who implements a combination of both

methods would make less profit compared to his peers but would have higher publicity, and space for

miscellaneous weights; given the inputs.

In summary, optimizing profit for a space leasing company could take a multi-objective

multi-integer approach, a basic approach, or a combination of both; and using the above techniques,

owners of such spaces can model, and even optimize the selection of clients for such spaces - to optimize

for whatever they deem most important.

References

Branch and bound. (2018). Retrieved from ​https://en.wikipedia.org/wiki/Branch_and_bound

Knapsack problem. (2018, December 18). Retrieved from

https://en.wikipedia.org/wiki/Knapsack_problem

Helmut M. (2006). Normalization and Other Topics in Multi-Objective Optimization. Retrieved on

December 21, 2018

Problems¶. (n.d.). Retrieved from ​https://www.cvxpy.org/api_reference/cvxpy.problems.html

Appendix

Generating the random data

import​ numpy ​as​ np
import​ names
import​ random
import​ cvxpy ​as​ cp
import​ numpy.linalg ​as​ nl

naames ,aages, weight, gender, bid ,kids , celeb = [],[], [], [], [],[],[]

for​ i ​in​ range(​600​):
 naames.append(names.get_full_name())

 aages.append(random.randint(​18​, ​80​))
 weight.append(random.randint(​40​, ​200​))

https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Knapsack_problem
https://www.cvxpy.org/api_reference/cvxpy.problems.html

 gender.append(random.randint(​0​, ​1​))
 t = random.randint(​0​, ​4​)
 kids.append(t)

 celeb.append(random.randint(​0​, ​1​))
 ​if​ t > ​2​:
 bid.append(random.randint(​8000​, ​14000​))
 ​else​:
 bid.append(random.randint(​4000​, ​10000​))

naames = np.array(naames)

aages = np.array(aages)

weight = np.array(weight)

gender = np.array(gender)

bid = np.array(bid)

kids = np.array(kids)

celeb = np.array(celeb)

holder= []

for​ i ​in​ range(​600​):
 holder.append([naames[i], aages[i], weight[i], gender[i], bid[i],

kids[i], celeb[i]])

Applying the first method

import​ math

X = cp.Variable(len(weight), boolean = ​True​, integer = ​True​)
cash = bid.T*X

constraints = [weight.T*X <= ​1000​, kids.T*X <= ​50​, celeb.T*X >= ​10​]
prob = cp.Problem(cp.Maximize(cash), constraints)

result = prob.solve()

indices = []

for​ i ​in​ range(​600​):
 ​if​ round((X.value[i]),​5​) >= ​1.0​:
 indices.append(i)

solution = np.array([holder[i] ​for​ i ​in​ indices])

print([​"Name"​, ​"Age"​, ​"Weight"​, ​"Gender"​, ​"Bid"​, ​"Kids"​, ​"Celebrity"​])
print(solution)

totalkids, totalweight ,totalc ,totalcash = ​0​,​0​,​0​,​0
nweight = []

nbid = []

for​ i ​in​ solution:
 totalkids += int(i[​5​])
 totalweight += int(i[​2​])
 totalcash += int(i[​4​])
 totalc += int(i[​-1​])
 nweight.append(i[​2​])
 nbid.append(i[​4​])
print(len(solution), ​"people were selected with a total weight of "​,
totalweight, ​"and a total of"​, totalkids, ​" kids and"​, totalc
,​"celebrities"​)
print(​"Your total revenue is "​, totalcash)

Applying the second method

import​ sklearn.preprocessing ​as​ sk
import​ math

X = cp.Variable(len(weight), boolean = ​True​, integer = ​True​)

cash = sk.scale(bid).T*X

popularity = sk.scale(celeb).T*X

damage = sk.scale(kids).T*X

constraints = [weight.T*X <= ​1000​]
prob = cp.Problem(cp.Maximize(​0.6​*cash + ​0.2​*popularity ​-0.2​*damage),
constraints)

result = prob.solve()

indices = []

for​ i ​in​ range(​600​):
 ​if​ round((X.value[i]),​5​) >= ​1.0​:
 indices.append(i)

solution = np.array([holder[i] ​for​ i ​in​ indices])

print([​"Name"​, ​"Age"​, ​"Weight"​, ​"Gender"​, ​"Bid"​, ​"Kids"​, ​"Celebrity"​])
print(solution)

totalkids, totalweight ,totalc ,totalcash = ​0​,​0​,​0​,​0
nweight = []

nbid = []

for​ i ​in​ solution:
 totalkids += int(i[​5​])
 totalweight += int(i[​2​])
 totalcash += int(i[​4​])
 totalc += int(i[​-1​])
 nweight.append(i[​2​])
 nbid.append(i[​4​])
print(len(solution), ​"people were selected with a total weight of "​,
totalweight, ​"and a total of"​, totalkids, ​" kids and"​, totalc
,​"celebrities"​)
print(​"Your total revenue is "​, totalcash)

Applying the third method

import​ sklearn.preprocessing ​as​ sk
import​ math

X = cp.Variable(len(weight), boolean = ​True​, integer = ​True​)

cash = sk.scale(bid).T*X

popularity = sk.scale(celeb).T*X

damage = sk.scale(kids).T*X

constraints = [weight.T*X <= ​1000​, sk.scale(kids).T*X <=
(​50​-np.mean(kids))/nl.norm(kids, ​2​), sk.scale(celeb).T*X >=
(​10​-np.mean(celeb))/nl.norm(celeb, ​2​)]
prob = cp.Problem(cp.Maximize(​0.6​*cash + ​0.2​*popularity ​-0.2​*damage),

constraints)

result = prob.solve()

indices = []

for​ i ​in​ range(​600​):
 ​if​ round((X.value[i]),​5​) >= ​1.0​:
 indices.append(i)

solution = np.array([holder[i] ​for​ i ​in​ indices])

print([​"Name"​, ​"Age"​, ​"Weight"​, ​"Gender"​, ​"Bid"​, ​"Kids"​, ​"Celebrity"​])
print(solution)

totalkids, totalweight ,totalc ,totalcash = ​0​,​0​,​0​,​0
nweight = []

nbid = []

for​ i ​in​ solution:
 totalkids += int(i[​5​])
 totalweight += int(i[​2​])
 totalcash += int(i[​4​])
 totalc += int(i[​-1​])
 nweight.append(i[​2​])
 nbid.append(i[​4​])
print(len(solution), ​"people were selected with a total weight of "​,
totalweight, ​"and a total of"​, totalkids, ​" kids and"​, totalc
,​"celebrities"​)
print(​"Your total revenue is "​, totalcash)

